

Россия, 188300, Ленинградская область, г. Гатчина, Орлова роща

РЕАКТОРНЫЙ КОМПЛЕКС ПИК Состояние на конец 2019 Воронин В.В.

Россия, 188300, Ленинградская область, г. Гатчина, Орлова роща

Реакторный комплекс ПИК

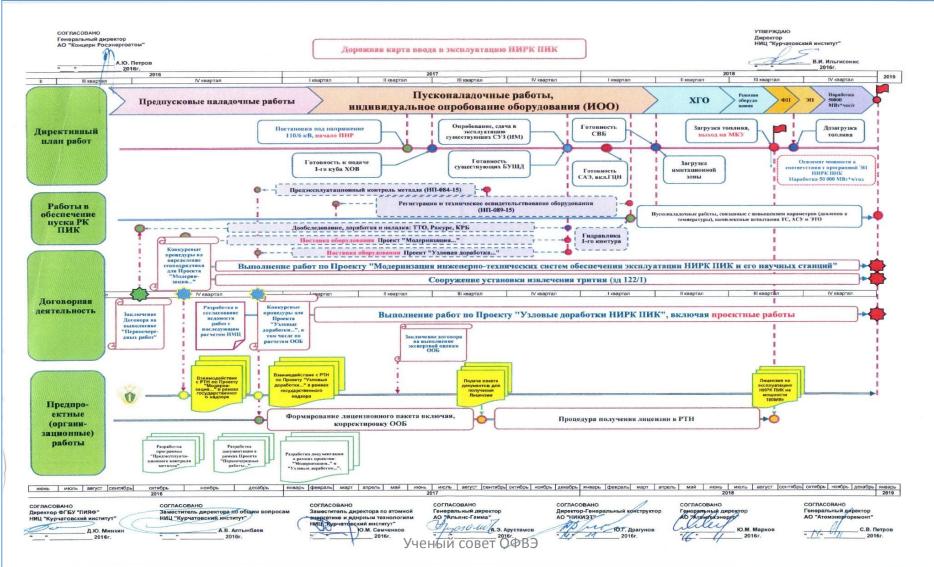
«КУРЧАТОВСКИЙ ИНСТИТУТ»

Параметры реактора ПИК

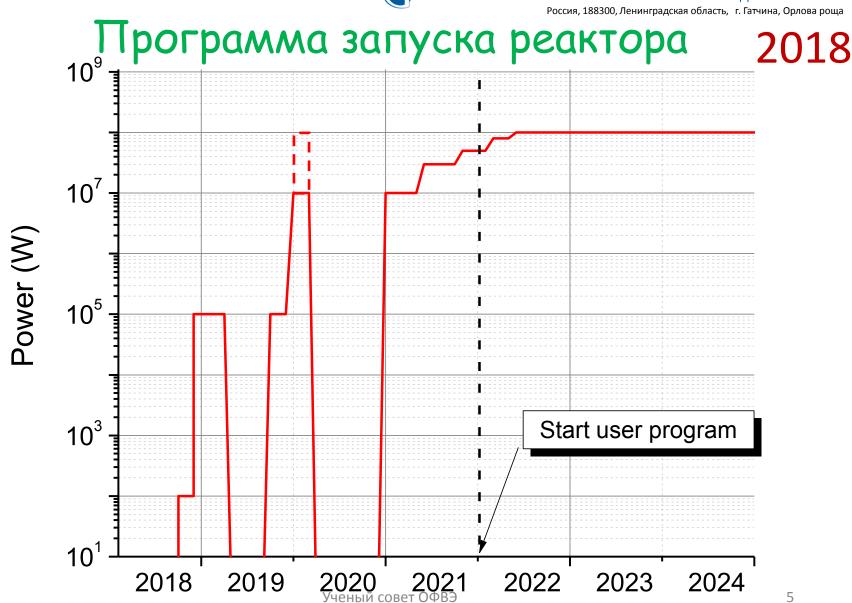
ПЕТЕРБУРГСКИЙ ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ

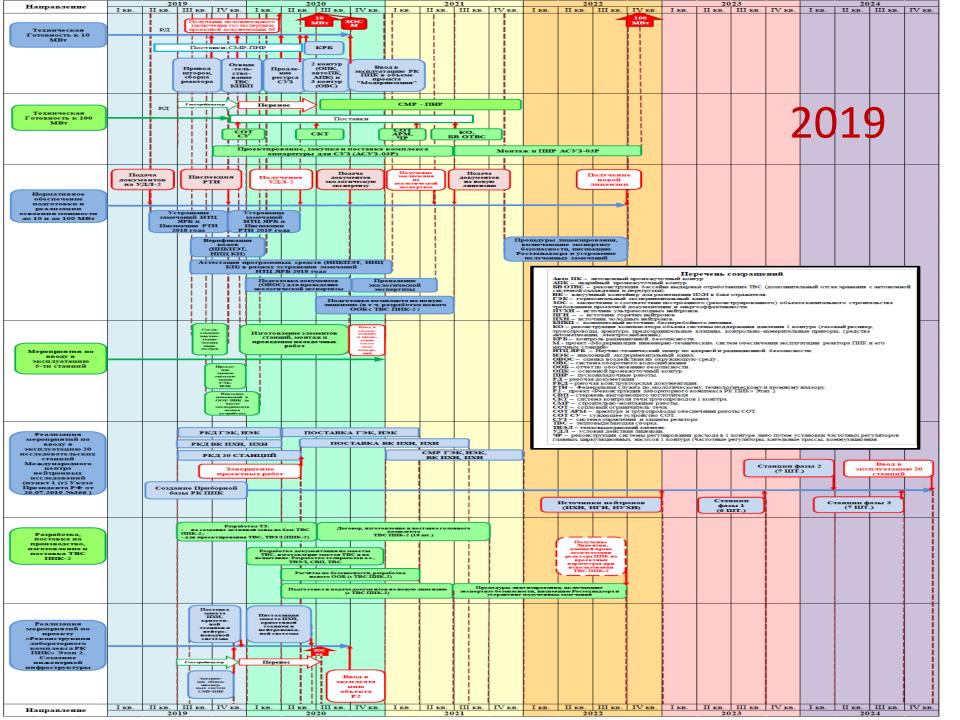
Россия, 188300, Ленинградская область, г. Гатчина, Орлова роща

							г
10 ¹⁶							
		Φ_1					
Ф, ст. 5-10 15 г. 10 15 г. 10 14						\dashv	l _a
Φ, ο							
10 ¹⁴		-				\dashv	L
		Φ ₃	Φ2				-
10 ¹³	1 1					7	
() 25	5 5	0 7	5 10	00 12	25	
		ГЭК5		R, c		,	
	нэк			вэк2			L
	вэкз –			НЭК4	<i></i> _	— ГЭК2	2
ГЭК10 —		* /		7 1	нэк5	– НЭК6	
					9)		
ВЭК5 —		1 2 1 1 m					
Воко				3			– гэкз
I				4	F	L NXF	1
	(N)						
вэк6 —	1///	200		∠ гэк4-4 — игн	4'	7	-
ВЭК4 —			AY	NLH	нэк	1	-
/	ГЭК7' - ГЭК7 -				эк1 2		
гэк9 –∕		/ [<u></u> ∟ЭК6			Ľ
	НЭ	K2 '	∕— гэк	8			

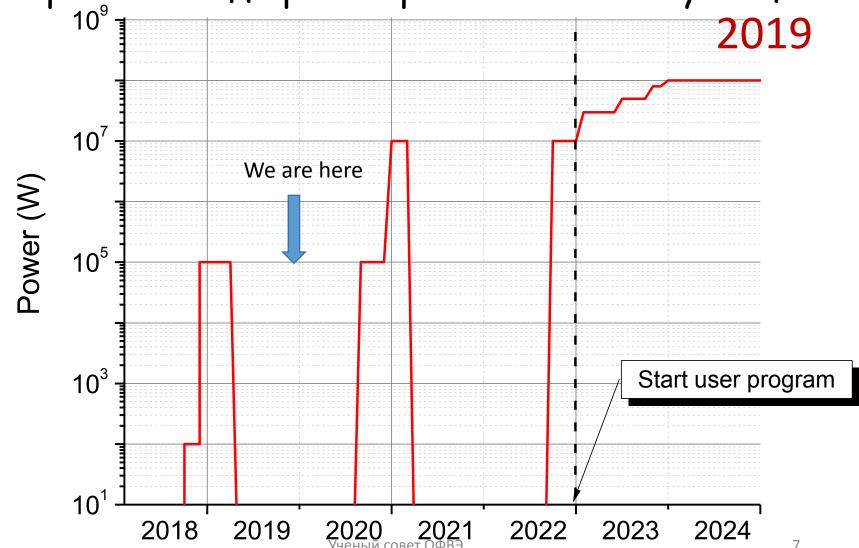

Параметр	Значение
Максимальная тепловая мощность	100 МВт
Объем активной зоны	50 l
Высота активной зоны	500 мм
Теплоноситель	H ₂ O
Отражатель	D_2O
Максимальная плотность потока	1.3x10 ¹⁵ n/cm ² c
нейтронов в отражателе	
Максимальная плотность потока	5x10 ¹⁵ n/cm ² c
нейтронов в центральной ловушке	
Операционный цикл	~30 дней
Экспериментальные каналы	23
- горизонтальный (ГЭК)	10 (3 сквозных)
- вертикальный (ВЭК)	6
- наклонный (НЭК)	6
- центральный (ЦЭК)	1

Россия, 188300, Ленинградская область, г. Гатчина, Орлова роща


Дорожная карта ввода в эксплуатацию ИЯУ ПИК

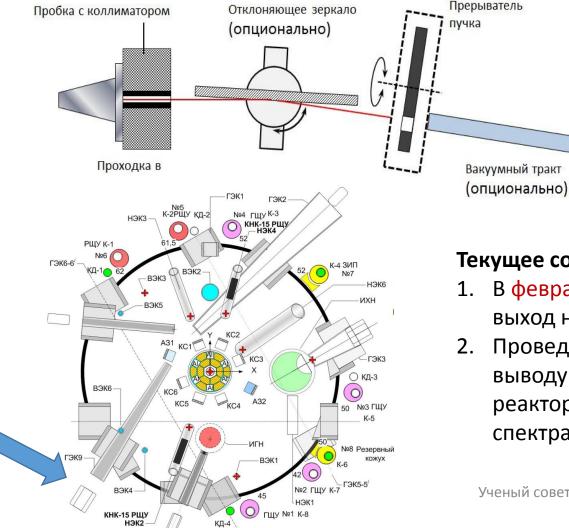


Россия, 188300, Ленинградская область, г. Гатчина, Орлова роща



Россия, 188300, Ленинградская область, г. Гатчина, Орлова роща

Программа ввода реактора ПИК в эксплуатацию



Россия, 188300, Ленинградская область, г. Гатчина, Орлова роща

Детектор + защита

Первый эксперимент на пучке реактора ПИК (2019)

Текущее состояние –

- В феврале 2019г осуществлен выход на 100кВт
- Проведен первый эксперимент по выводу пучка нейтронов из реактора и измерение его спектра.

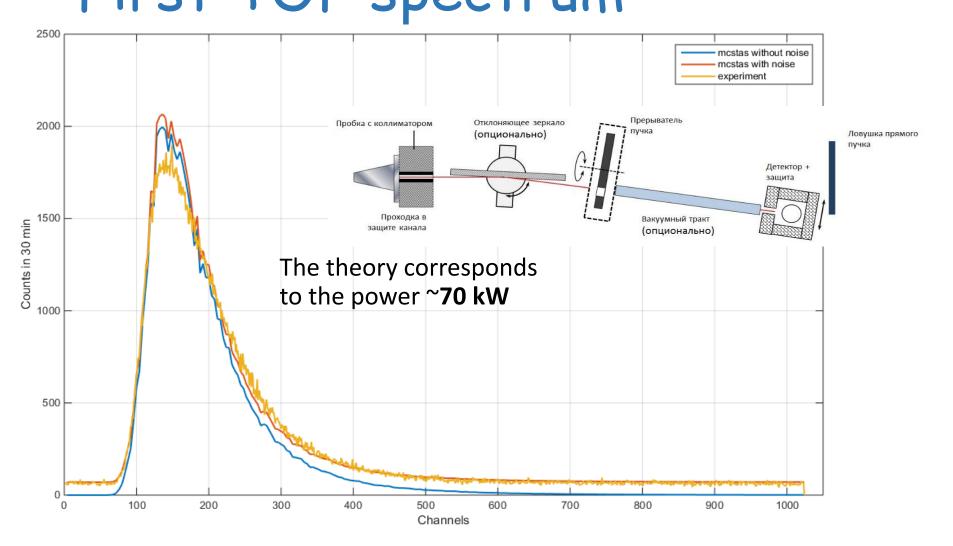
Ученый совет ОФВЭ

Ловушка прямого

пучка

Россия, 188300, Ленинградская область, г. Гатчина, Орлова роща

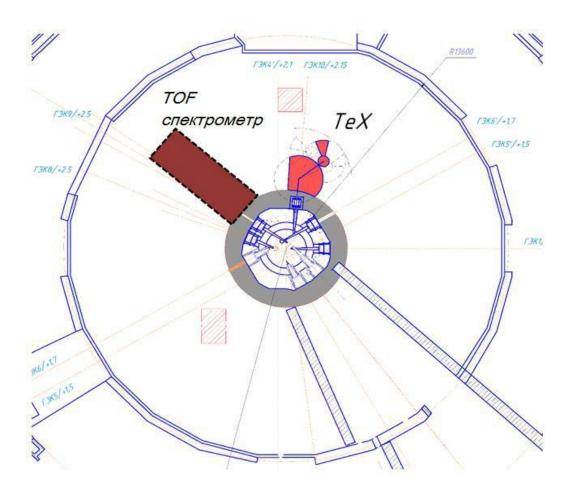
Фотография ТОF установки



First TOF spectrum

ПЕТЕРБУРГСКИЙ ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ

Россия, 188300, Ленинградская область, г. Гатчина, Орлова роща



Россия, 188300, Ленинградская область, г. Гатчина, Орлова роща

План на 2019г (эксплуатационные расходы)

2018

8.02.2019 демонстрационный эксперимент (вывод пучка и измерение спектра нейтронов) ГЭК-9

Август 2019 – модернизация до рефлектометра для проветри нейтроноводов (P2)

Октябрь 2019 – установка текстурного дифрактометра TEX, ΓЭK-10

УКА3

ПРЕЗИДЕНТА РОССИЙСКОЙ ФЕДЕРАЦИИ

КАНЦЕЛЯРИЯ резидент Роской Федерации В.Путин

Москва, Кремль 25 июля 2019 года № 356

О мерах по развитию синхротронных и нейтронных исследований и исследовательской инфраструктуры в Российской Федерации

В целях комплексного решения задач ускоренного развития синхротронных и нейтронных исследований, необходимых для создания прорывных технологий, а также обеспечения создания и развития исследовательской инфраструктуры в Российской Федерации п о с т а н о в л я ю:

ввод в эксплуатацию пяти исследовательских станций Международного центра нейтронных исследований на базе высокопоточного реактора ПИК - до 31 декабря 2020 г.;

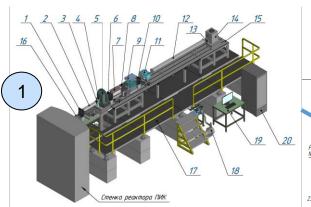
проектирование уникальной научной установки класса "мегасайенс" (о. Русский) и строительство здания для переноса конструктивных блоков и агрегатов источника синхротронного излучения "Зеленоград" - до 31 декабря 2021 г.;

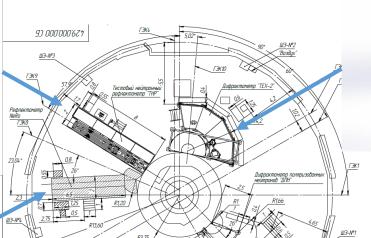
модернизацию Курчатовского специализированного источника синхротронного излучения "КИСИ-Курчатов" - до 31 декабря 2022 г.; создание источника синхротронного излучения поколения 4+ - до 31 декабря 2023 г.;

создание прототипа импульсного источника нейтронов на основе реакции испарительно-скалывающего типа - до 31 декабря $2024 \, \Gamma$.;

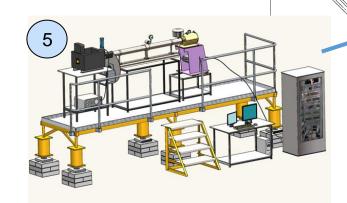
ввод в эксплуатацию 20 исследовательских станций Международного центра нейтронных исследований на базе высокопоточного реактора ПИК - до 31 декабря 2024 г.;

«КУРЧАТОВСКИЙ ИНСТИТУТ»




ПЕТЕРБУРГСКИЙ ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ

Россия, 188300, Ленинградская область, г. Гатчина, Орлова роща


Этап 1. Расположение установок на РК ПИК (5 станций)

2019

- 1. Тестовый нейтронный рефлектометр ТНР (НИЦ «КИ» ПИЯ Φ)
- 2. Рефлектометр поляризованных нейтронов NERO (GKSS)
- 3. Дифрактометр поляризованных нейтронов ДПН (НИЦ «КИ» ПИЯФ)
- 4. Текстурный дифрактометр TEX-2 (GKSS)
- 5. Тестовый нейтронный спектрометр (НИЦ «КИ» ПИЯФ)

ФЦП «Приборная база реактора Писко» Область, г. Гатчина, Орлова роща (2019-2024гг). 2019 - Выделено финансирование. Начаты проектные работы

Источник холодных нейтронов (ИХН-2)
Источник горячих нейтронов (ИГН)
Источник ультрахолодных нейтронов (ИУХН)
Experimental stations for condensed matter (13)

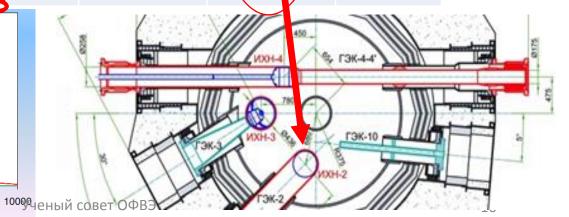
- Diffractometers (3)
- Spectrometers of inelastic scattering (5)
- SANS machines (3)
- Reflectometers (2)

Experimental stations for fundamental physics (7)

- Fission physics (1)
- Stations with CN (2)
- Neutrino physics facility (1)
- Stations for nuclear spectroscopy (3)

Cold neutron sources at PIK reactor

ПЕТЕРБУРГСКИЙ ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ

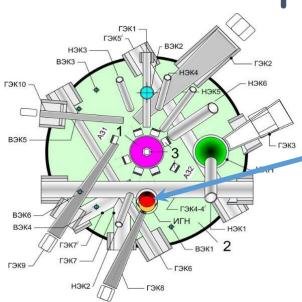

Россия, 188300, Ленинградская область, г. Гатчина, Орлова роща

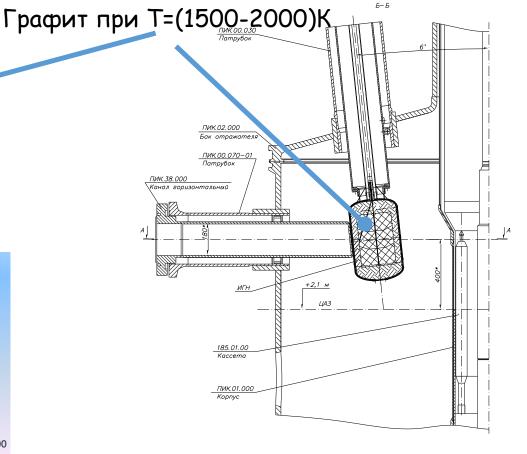
Cold neutron flux available for the users can be $\sim 7 10^{10}$ cm⁻²c⁻¹

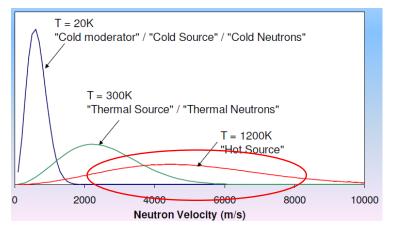
Parameter	ANSTO	PIK (HEC-3)	PIK (HEC-2)	ILL (V/H)
Reactor power	20	100	100	57
CN flux density at the source, cm ⁻² s ⁻¹	1.65 10 ¹⁴	4 10 ¹⁴	5 10 ¹⁴	4.6 10 ¹⁴ /8 10 ¹⁴
CN flux density at the exit from reactor, cm ⁻² s ⁻¹	(1.8-2.5) 10 ¹⁰	6.0 10 ¹⁰	17.0 10 ¹⁰	10 ¹⁰ / 4 10 ¹⁰
CN flux density at the neutronguide hall, Heï	6.4 10 ⁹ Троны с	~13 10° энергиеі	~??? 10 ⁹	6 10 ⁹

cm ²S ² ~ 10⁻³3B

T = 20K"Sold moderator" / "Cold Source" / "Cold Neutrons" = 300KThermal Source" / "Thermal Neutrons" T = 1200K"Hot Source" 2000 4000 6000 8000 Neutron Velocity (m/s)



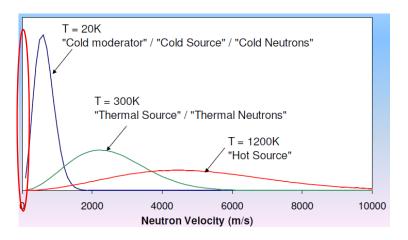

Россия, 188300, Ленинградская область, г. Гатчина, Орлова роща


Источник горячих нейтронов

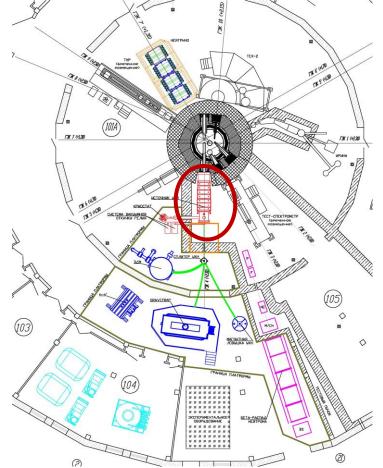
Нейтроны с энергией

~ 10⁻¹эВ

V~35л


ПЕТЕРБУРГСКИЙ ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ

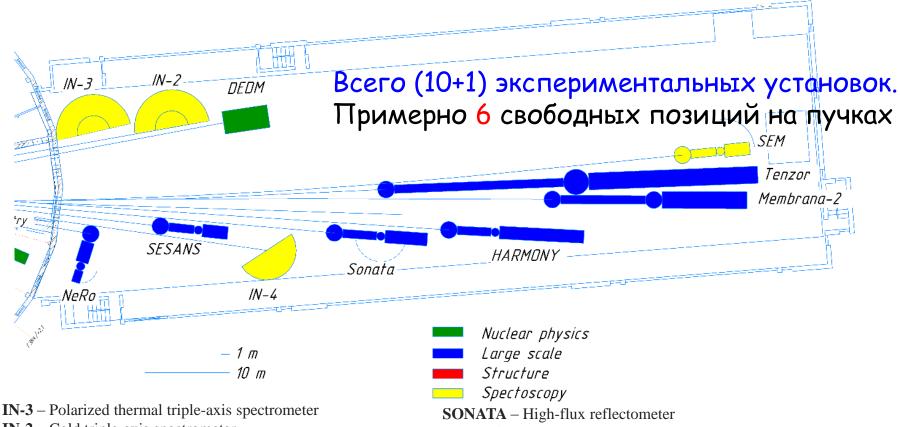
Россия, 188300, Ленинградская область, г. Гатчина, Орлова роща


Источник ультрахолодных нейтронов

Не-4 конвертор на выведенном пучке нейтронов. Т-(0,8-1)К

Плотность – до $2 \cdot 10^3$ n/cм 3 (в 100 раз выше чем где либо)

Нейтроны с энергией ~ 10⁻⁷эВ


Ученый совет ОФВЭ

Россия, 188300, Ленинградская область, г. Гатчина, Орлова роща

Комплекс установок нейтроновдного зала

IN-2 – Cold triple-axis spectrometer

NeRo – Polarized reflectometer

D2 – Cold powder diffractometer

SESANS – Small-angle spin echo diffractometer

IN-4 – Time-of-flight spectrometer

HARMONY – Reflectometer with a vertical scattering plane

Membrana-2 – Small-angle diffractometer

Tenzor – Polarized small-angle diffractometer

SEM – Spin echo spectrometer

DEDM – General instrument for studying properties of neutrons and

Россия, 188300, Ленинградская область, г. Гатчина, Орлова роща

Зал горизонтальных каналов

Всего (7+4) экспериментальных установок.

Вторичные источники нейтронов:

ХН - 2 шт, УХН, ИГН

Свободные пучки отсутствуют

Neutrino – Detector of reactor antineutrino

D3 – High-flux powder diffractometer

DC1 – Thermal four-circle diffractometer

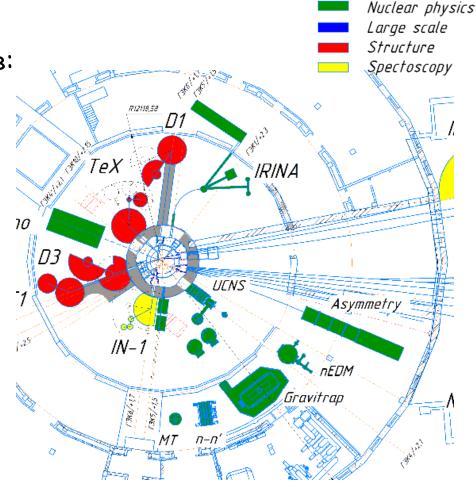
IN-1 – Thermal triple-axis spectrometer

Asymmetry – Correlation cold neutron spectrometer

IRINA – Research of r/a isotope

D1 – High-resolution powder diffractometer

UCNS - Ultra cold neutron source


TeX – Four-circle diffractometer for texture analysis

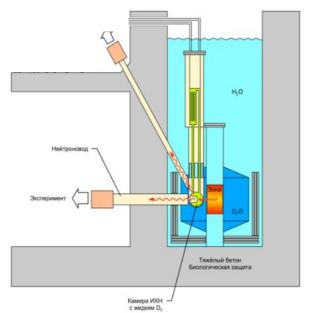
 $\boldsymbol{MT}-\boldsymbol{Instrument}$ for measurements of neutron lifetime with a magnetic trap of UCNS

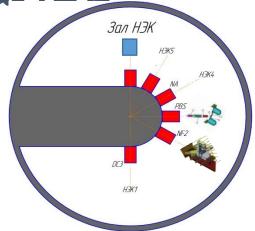
Gravitrap - Instrument for measurements of neutron lifetime with a gravitational trap of UCNS

n-n' – Experiment on searching dark matter

nEDM – Experiment on searching neutron electric dipole moment

Россия, 188300, Ленинградская область, г. Гатчина, Орлова роща


Зал наклонных каналов


Пучки нейтронов направлены под 60° к горизонту

Пучковых позиций - 6

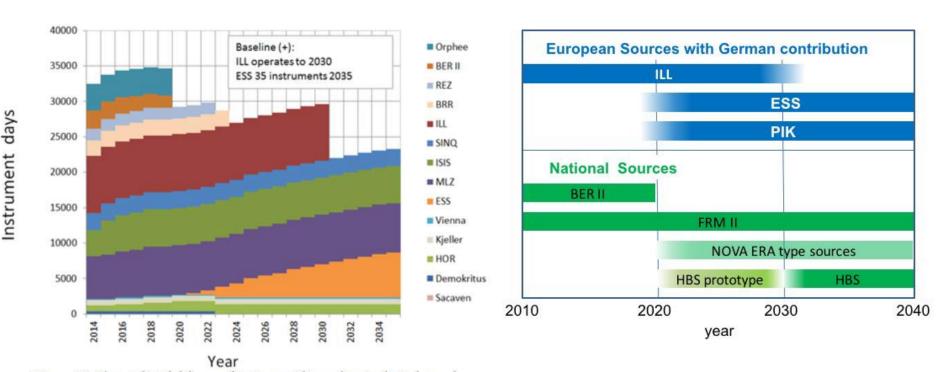
Занято экспериментальными установками - 3

Свободно - 3 (1-ХН, 2-ТН)

национальный исследовательский центр -графикуреанизацики ФИНПусроздание приборной база реактора ПИК»

		График работы																					
Nº	N <u>o</u> Наименование работ	2019 2020			2021				2022				2023				2024						
п/п	п/п		IV	_	П	Ш	IV	_	Ш	Ш	IV	1	Ш	Ш	IV	1	Ш	Ш	IV	1	Ш	Ξ	IV
1 Проектная документация																							
2	Новые каналы ГЭК, НЭК																						
3	ИГН на ГЭК-8																						
4	Источник УХН на ГЭК-4																						
5	ИХН на ГЭК-2																						
6	Нейтронные станции																						
6.1	IN-1																						
6.2	SESANS																						
6.3	SONATA																						
6.4	Мембрана-2																						
6.5	INAA																						Ш
6.6	«Нейтрино»																						
6.7	DC1																						
6.8	IN-3																						Ш
6.9	D1																						
6.10	HARMONY																						
6.11	ИРИНА																						Ш
6.12	PROGRAS																						
6.13	DEDM																						
6.14	Tenzor																						
6.15	IN-2																						
6.16	IN-4																						
6.17	D3																						
	SEM																						
6.19	FISCO																						
6.20	«Бета-распад нейтрона»																						
7	Лабораторно-технологический																						
	комплекс					Vuc	تنست	LCOR	от О	ΦRA													

Россия, 188300, Ленинградская область, г. Гатчина, Орлова роща


Создание экспериментальной базы РК ПИК. Фаза 3 (2020-2024 и далее) - МЦНИ - взаимовыгодное сотрудничество

Россия, 188300, Ленинградская область, г. Гатчина, Орлова роща

Европейские источники нейтронов

Figure 12. The predicted delivery of instrument beam days in the Enhanced Baseline Scenario

From "Strategy Paper on Neutron Research in Germany: 2015–2045"

Россия, 188300, Ленинградская область, г. Гатчина, Орлова роща

Состояние дел по МЦНИ

- 1. В настоящее время в рамках сотрудничества с HZG на ПИК поставлено 7 установок нейтронного рассеяния. Требуется модернизация
- 2. В активной фазе переговоры с ФРГ о вступлении в МЦНИ на базе реактора ПИК
- 3. В рамках программы CREMLIN+ (2020-2023) создание 3-5 новых и модернизация 3-х существующих установок за счет средств немецкой стороны.

«КУРЧАТОВСКИЙ ИНСТИТУТ»

Россия, 188300, Ленинградская область, г. Гатчина, Орлова роща

Основные события 2019г.

- Выход на 100кВт. Проведение первого эксперимента на выведенном пучке
- Запуск ФЦП «Создание приборной базы реактора ПИК» (20 установок, 3 источника и др)
- Окончание и продление ФЦП «Реконструкция» (ИХН, нейтроноводная система)
- Указ президента РФ. Появление 5 станций в 2020г.

ПЕТЕРБУРГСКИЙ ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ

Россия, 188300, Ленинградская область, г. Гатчина, Орлова роща

Ожидания -

2019 (100kBt), 2020 (10 MBt), 2022 (100 MBt)

2020 - запуск станций первой очереди (5 шт)

2022 - монтаж экспериментальных каналов

2023 - запуск вторичных источников нейтронов

2023 - начало пользовательской программы

С Новым Годом!!!

Уче

Россия, 188300, Ленинградская область, г. Гатчина, Орлова роща

2018

Ожидания -

2018-2019гг - энергопуск

2020-2021гг - переход на новое топливо,

запуск ИХН, НС и первой фазы приборов.

Начало экспериментальной программы

2022-2023гг - начало пользовательской

программы

